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The Modified Eccentric Connectivity Polynomial of a molecular graph, G, is defined as MECP(G,x)= 
 )(GVu

nG(u). x
ecc(u)

, 

where ecc(u) is defined as the length of a maximal path connecting u to another vertex of molecular graph G and nG(u) is 
the sum of the degrees of its neighborhoods. Suppose CNC4[n] is carbon nanocone with a unique square. In this paper, we 
compute this polynomial for CNC4[n] carbon nanocones. 
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1. Introduction 
 

Research into carbon nanocones (CNC) started almost 

at the same time as the discovery of carbon nanotube 

(CNT) in 1991. Ball studied the closure of CNT and 

mentioned that CNT could sealed by a conical cap, see [1]. 

The official report of the discovery of isolated CNC was 

made in 1994, when Ge and Sattler from the University of 

Hawaii reported their observations of carbon cones mixed 

together with tubules on a flat graphite surface, see [12].  

The heights of the cones exceeded those of any other 

carbon cones in the literature, and the apex angles of the 

CNC were widely distributed. These findings supported 

the explanation of the opening angles of the five angles 

having cone-helix structures. 

The closure of the tip requires the inclusion of a pentagon, 

which is converted from a hexagon to create a cone with 

an opening angel of 112.9


. This process can be continued 

by introducing more pentagons into the graphitic sheet 

with corresponding 60


disclamations for each additional 

pentagon up to a total of five pentagons. If a 120° wedge is 

considered then a cone with a single square defect at the 

apex is obtained, [18,19,20,22,24,25]. See Fig. 1 [23].  

A topological index of a molecular graph G is a 

numeric quantity related to G. The oldest nontrivial 

topological index is the Wiener index which was 

introduced by Harold Wiener [15,16]. John Platt was the 

only person who immediately realized the importance of 

the Wiener’s pioneering work and wrote papers analyzing 

and interpreting the physical meaning of the Wiener index. 

The name of topological index was introduced by Hosoya 

[14,20].  

 

 
 

Fig. 1.  

 

Many topological indices have been defined and 

several applications of them have been found in physical, 

chemical and pharmaceutical models and other properties 

of molecules. 

The eccentric connectivity index of the molecular 

graph G, )(Gc , was proposed by Sharma, Goswami and 

Madan [16]. It is defined as  

)(Gc =  )(
)().(deg

GVu G ueccu  where degG(u) 

denotes the degree of the vertex u in G and  ecc(u)= 

Max{d(x,u) | x V(G)}. The radius and diameter of G are  

defined as the minimum and maximum eccentricity among 

vertices of G, respectively.  

The modified eccentric connectivity polynomial 

(MECP) of graph G is defined as 

MECP(G,x)=  )(

)()(
GVu

uecc

G xun , where nG(u) is the 

sum of the degrees of its neighborhoods [2].  
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Let G be a simple molecular graph without directed 

and multiple edges and without loops, the vertex and edge-

sets of which are represented by V(G) and E(G), 

respectively. The vertices in G  are connected by an edge 

if there exists an edge  uvE(G)  connecting the vertices u 

and v in G so that  u,vV(G).  In chemical graphs, the 

vertices of the graph correspond to the atoms of the 

molecule, and the edges represent the chemical bonds. The 

number of vertices and edges in a graph will be defined by 

|V(G)| and |E(G)|  respectively. In graph theory, a path of 

length n in a graph is a sequence of n + 1 vertices such 

that from each of its vertices there is an edge to the next 

vertex in the sequence. For two vertices u and v of G, 

dG(u,v) denotes the length of a minimal path connecting u 

and v. A graph G is called connected, if there is a path 

connecting vertices u and v of G, for every u,vV(G). 

Suppose H is a set, Hi, 1 ≤ i ≤ m, are subsets of H and K= 

{Hi}1≤i≤m is a family of subsets of H. If Hi’s are non-empty, 

H=
m

i 1

Hi and Hi Hj= (empty), for ji   then K is 

called a partition of H, [17,4]. 
 

 
 

Fig. 2. The carbon nanocone CNC4[4]. 

 

  
2. Main results and discussion 
 

In this section we calculate the MEC polynomials of 

One–Square,Carbon Nanocone by use a numerical 

method. In continue a matlab program is presented which 

is useful for computing the MEC polynomial of a 

nanocone. We apply this program to compute of the 

molecular graph of nanocone CNC4[n], when n1 , see 

Fig. 2. 

Lemma 1. For uV(CNC4[n]),  

Max ecc(u)=4n-2  and   Min ecc(u)= 2n.   

Proof. Suppose u is a vertex of the central of 

CNC4[n]. Then from Fig. 2, one can see that there exists a 

vertex v of degree 2 such that d(u,v)=2n and there exists 

another vertex w of degree 2 such that d(u,w) =2n-2. 

Therefore, the shortest path with maximum length is 

connecting two vertices of degree 2 in CNC4[n]. Then this 

proof is complete. 

Theorem 1. The MEC polynomial of one–square 

carbon nanocone is computed as follows: 

MECP(CNC4[n],x)= 
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Proof.  Suppose K[n]= CNC4[n]. With respect to Fig. 

3, K[n]=
4

1i

iT , where {Ti}1≤i≤4  is a partition  of the 

molecular graph K[n]. We have |V(K[n])|=4n
2
 and 

|E(K[n])|=2(3n
2
-n). It is easy to check that, deg(u)=2 for 

vertices with maximum eccentric connectivity and 

deg(u)=3 for other vertices of Ti . See Table 1 for vertices 

of Ti . 
 

Table 1. Types of CNC4[n] vertices. 

 

Degree 

  

Ecc Number  Vertex 

2 4n-2 4n Type  1 

 

3 4n-2i-1 4n-4i Type   i+1,A 

11  ni  

3 4n-2i-2 4n-4i Type  i+1 ,B 

11  ni 

 

Thus implies that  

MECP(Ti ,x)=   )(
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iTVu
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G xun  

 

nnnn

nn

nnn

xxxx

xnxn

xnxnxn

2122232

6454

443424

992929...

)2(9)2(9

)1(9)1(7)26(













 

 

n

nn

nn

xx

xxxxn

xxnxn

2

2264

4424

)1(9

)1(29...)1)(2(9

)97)(1()26(











 

 















1

2 2

24

4424

)1(9

)97)(1()26(

n

i i

n

nn

x

in
xx

xxnxn
 

 

Therefore   

MECP(K[n],x)=   ])[(

)()(
nKVu
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G xun  
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Then this proof is completed. 

In this section we determine a matlab Program for 

computing the modified eccentric connectivity polynomial 

of CNC4[n] carbon nanocones. 

function [varargout]=MEC Polynomial (varargin) 

  

 %      cnc4(1:10,'plot',... 

 %     'LimitN',[1 3 4 5],... 

 %     'Axis',[x_min x_max y_min y_max],... 

 %      'Grid') 

 nn = varargin{1}; 

syms x  

if ischar(varargin{1}) == 1 

 error('Error : Vector must have 1 Argument.') 

else 

nn = varargin{1}; 

nn2 = nn; 

end 

F_P = strcmp(varargin,'Limit') ;  

if sum(F_P) ~=0 ; nn2 = varargin{find(F_P)+1} ;  

endif size(nn,1) ~= 1 

error('Error : Vector(N) must have 1 row.') 

elseif ( min(nn) < 1 ) 

error('Error : N >=1 ')     

elseif (min(nn2) < min(nn)) || (max(nn2) > max(nn)) 

error('Error : N2 ')   

else 

%%%  Modified Eccentlic Connectivity Polynomial 

 for j = 1:length(nn) 

 n=nn(j); 

Sigma = sum([0 ((n-(2:n-1))./(x.^(2.*(2:n-1))))]); 

ANS.MECPx(n-nn(1)+1) = 

(((4*((6*n)-2)*(x^(4*n)))/(x^2))+((4*(n-

1)*((7*x)+9)*(x^(4*n)))/(x^4))+((36*(1+x)*(x^(4*n)))/(x^

2))*Sigma; 

end  

if nargout <= 1 

varargout{1}.MECPx = ANS.MECPx ; 

ANS.MECPxNAME = '.MECPx'; 

else 

varargout{1} = ANS.MECPx ; ANS.MECPxNAME = 

'ARG1'; end. 

 

In Table 2 we calculate the MEC polynomials of 

CNC4[n]  for 1≤n≤10, and Fig. 3, the diagram of the MEC 

polynomials of CNC4[n] are depicted. 
 

 

 

 

 
Table 2. The MEC  Polynomial of  CNC4[n]. 

 

n MEC Polynomial 

1 16x
2
 

2 40x
6
+28x

5
+36x

4
 

3 64x
10

+56x
9
+72x

8
+36x

7
+36x

6
 

4 88x
14

+84x
13

+108x
12

+72x
11

+72x
10

+36x
9
+36x

8
 

5 
108x

18
+102x

17
+144x

16
+108x

15
+108x

14
+72x

13
 

+72x
12

+36x
11

+36x
10

 

6 
136x

22
+140x

21
+180x

20
+144x

19
+144x

18
+108x

17 

+108x
16

+72x
15

+72x
14

+36x
13

+36x
12

 

7 

160x
26

+168x
25

+216x
24

+180x
23

+180x
22

+144x
21

+ 

144x
20

+108x
19

+108x
18

+72x
17

+72x
16

+36x
15

+ 

36x
14

 

8 

184x
30

+196x
29

+252x
28

+216x
27

+216x
26

+180x
25

+ 

180x
24

+144x
23

+144x
22

+108x
21

+108x
20

+72x
19

+ 

72x
18

+36x
17

+36x
16 

9 

208x
34

+224x
33

+288x
32

+252x
31

+252x
30

+216x
29

+ 

216x
28

+180x
27

+180x
26

+144x
25

+144x
24

+108x
23

+ 

108x
22

+72x
21

+72x
20

+36x
19

+36x
18 

10 

232x
38

+252x
37

+324x
36

+288x
35

+288x
34

+252x
331

+

252x
32

+216x
31

+216x
30

+180x
29

+180x
28

+144x
27

+

144x
26

+108x
25

+108x
24

+72x
23

+72x
22

+36x
21

+ 

36x
20 

 

 

 
 

Fig. 3. The diagram of the MEC polynomial  

of CNC4[n] for 1≤n≤10. 
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3. Conclusions 
 

In this paper, we calculated the MEC polynomials of 

one–square carbon nanocone by use a Matlab program. 

Our numerical method is general and can be extended to 

other nano-materials too. On the other hand, by using this 

matlab program, can be calculated modified eccentric 

connectivity polynomial for carbon nanocone of any 

arbitrary capacities. 
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